
Improving Software Quality Using FMEA and
FTA Defect Prevention Techniques in Design

Phase
Shahin Fatima, Dr.Mohd. Rizwan Beg, Shadab Siddiqui

Department of Computer Science and Engineering,

Integral University, Lucknow (India)

Abstract— The cost of finding and correcting defects
represents one of the most expensive software development
activities. And that too, if the errors get carried away till the
final acceptance testing stage of the project life cycle, then the
project is at a greater risk in terms of its Time and Cost
factors. A small amount of effort spent on quality assurance
will see good amount of cost savings in terms of detecting and
eliminating the defects. The purpose of defect prevention is to
identify those defects in the beginning of the life cycle and
prevent them from recurring so that the defect may not
surface again. Software for safety-critical systems must deal
with the hazards identified by safety analysis in order to make
the system safe, risk-free and fail-safe. Certain faults in
critical systems can result in catastrophic consequences such
as death, injury or environmental harm. The focus of this
paper is an approach to software safety analysis based on a
combination of two existing fault removal techniques. A
comprehensive software safety analysis involving a
combination of Design Failure Modes and Effects Analysis
(DFMEA) and Design Fault Tree Analysis (DFTA) is
conducted on the functions of the critical system during design
phase to identify potentially hazardous design faults. A
prototype safety-critical system - Elevator Door Control
System (EDCS), is described here and DFMEA and DFTA
technique is applied on a component of EDCS.

Keywords—Defect, Defect Analysis, Defect Prevention, Root
Cause Analysis software safety, safety-critical systems,
DFMEA, DFTA

I. INTRODUCTION

Software Defect can be defined as “A software defect is
a deficiency in a software product that causes it to perform
unexpectedly”. From a software user’s perspective, a defect
is anything that causes the software not to meet their
expectations. In this context, a software user can be either a
person or piece software. Defect Prevention (DP) is a
process of improving quality whose purpose is to identify
the common causes of defects, and change the relevant
process (es) to prevent that type of defect from recurring
[5]. DP also increases the quality of software product.
Defect prevention firstly involves identification of defect,
and then modification and changing the relevant processes,
preventing the re-occurring of the defects in the
development process. As early as defects are identified in
the development process, the more smoothly the
development process progresses. In this paper we have
discussed two defect prevention techniques viz. DFMEA
and DFTA. The first defect prevention technique is
Design failure modes and effects analysis (DFMEA). This
technique helps product teams anticipate product failure
modes and assess their associated risks in design phase of

software. Prioritized by potential risk, the riskiest failure
modes can then be targeted to design them out of the
software or at least mitigate their effects. The second defect
prevention technique described is fault tree analysis (FTA).
Unlike failure modes and effects analysis, which focuses on
potential failure modes and does not drill deeply into the
potential causes, fault tree analysis starts with an
“unintended event” (for example, a defect or failure mode)
and then drills into all the potential causal events. This
makes it a natural complement to DFMEA.

II. WORK FLOW STAGES DEFECT HANDLING

Figure 1: Process Improvement Workflow

A Defect Identification OR Defect Detection in Software
Process

Defect Identification is the first activity involved for
improving the quality of the Software Process. It is widely
used in many of the Software projects, for discovery of the
Software Defects, then documenting them for improving
the quality of the Software product [5].

B Defect Classification

ODC classifies defect at two different points in time:
One is Opener Section, where the defect were firstly
investigated and second one is Closer Section, where the
defects are fixed. For Small Sized and Medium Sized
Projects defects are classified to first level of ODC to save
efforts and time. For larger projects defects are deeply
understood and analysed [5].

C Defect Analysis

By the term analysis we meant the identification of the
root cause of the defect and then further devising the
solution to overcome the defect in further development
process which will be further useful in improving the
software quality and productivity of the software project.

Defect
Identification

Defect
prevention

Defect
classification

Process
Improvement

Defect
Analysis

Shahin Fatima et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 4 (1) , 2013, 178 - 182

www.ijcsit.com 178

Some of the defect analysis techniques such as Fish Bone
Analysis, Defect Classification and using defect
taxonomies and the Root Cause Analysis (RCA). RCA goal
is to first identify the root cause of the defects and then
initiating actions for the defect elimination [5].

D Defect Prevention

The primary goal of defect prevention is to anticipate
and prevent defects proactively before they can occur and
cause failures or confuse users. This is the best approach
because a defect that does not occur is also a defect that
need not be caught, fixed, and supported. The savings
resulting from the successful application of defect
prevention techniques can be reapplied elsewhere in the
product cycle. Examples of defect prevention techniques
used in this paper are Design failure modes and effects
analysis (DFMEA), Design fault tree analysis (DFTA) [5].

E Process Improvement

By the term Process improvement we mean the
continuously working for improvement for the quality of
the software process. Process Improvement meant that
following preventive actions for software improvement and
then further taking actions for further improvement of
quality. By continuous process improvement we identify
the errors continuously, correct it and hence the quality of
software is also improved [5].

III. IMPLEMENTATION OF DEFECT PREVENTIVE (DP)

TECHNIQUES

The first defect prevention technique is failure modes
and effects analysis (DFMEA).

A. Design Failure Modes and Effects Analysis

Design Failure modes and effects analysis (DFMEA) is a
defect prevention technique used to identify potential
failure modes in a product design phase, assess the risk of
each potential failure, and then implement appropriate
actions to eliminate or mitigate those failure modes. Once
identified, this information can be persisted and used in
future projects to help avoid defects.

The purpose of DFMEA is to identify possible failure
modes of the system components during design phase,
evaluate their influences on system behaviour and propose
proper countermeasures to suppress these effects [4].

1) Procedure

Step 1: Identify and Describe the Target Product Focus
Area

Step 2: Create a DFMEA Worksheet and Enter Initial
Data

Step 3: Determine Failure Modes and Add to DFMEA
Worksheet
A failure mode is a type of failure that could occur.
In software systems, this is evidenced by
symptoms such as a blue screen, system hang,
incorrect output, and data corruption. Identifying
Failure Modes Potential failure modes can be
identified from many different sources:
■ Brainstorming
■ Root cause analysis
■ Defect taxonomy

Step 4: Rate Failure Mode Impact, Likelihood, and
Detectability

Step 5: Calculate the Risk Priority Number for Each
Failure Mode.
The risk priority number (RPN) is a very
straightforward calculation. It is simply the
product of the impact rank, likelihood rank, and
delectability rank:
RPN = Impact Rank * Likelihood Rank *
Delectability Rank.

Step 6: Identify the Failure Modes with the Highest
Potential Risk

Step 7: Define an Action Plan to Eliminate or Mitigate
the Causes

Step 8: Reassess the Risk Priority After the Actions Are
Implemented

2) DFMEA BENEFITS:

Design Failure modes and effects analysis is a procedure
for proactively identifying potential failures and assessing
their risks. In software development, this provides benefits
such as the following:
■ Improved software quality and reliability result in an

improved customer experience and greater customer
satisfaction.
■ Focus on defect prevention by identifying and

eliminating defects in the software design stage helps to
drive quality upstream.
■ Proactive identification and elimination of software

defects saves time and money.
■ Prioritization of potential failures based on risk helps

support the most effective allocation of people and
resources to prevent them.

B. Design Fault Tree Analysis

Design Fault tree analysis (DFTA) is a technique that
uses Boolean logic to describe the combinations of
intermediate causal events that can initiate a failure
(“unintended event”). Where Design failure modes and
effects analysis (DFMEA) strives to enumerate all failure
modes for a product and then estimate their risk, fault tree
analysis starts with a specific failure and strives to
enumerate all the causes of that event and their
relationships. The overall goal is to identify specific
opportunities to eliminate or mitigate the causes that can

Shahin Fatima et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 4 (1) , 2013, 178 - 182

www.ijcsit.com 179

ultimately result in product failure. A fully constructed
fault tree represents a failure and all its potential causes.
From a qualitative perspective, the tree represents a logic
diagram that depicts a set of causal event sequences.
Ultimately, this diagram can be used to identify cut sets
that are unique combinations of basic causal events for
which, if each event occurs, the failure will occur. A cut set
can potentially be reduced by removing basic events and
still cause the failure. Ultimately, this reduction results in a
minimal cut set of basic events that cannot be reduced
further. These minimal cut sets can help software
development teams identify the combinations of basic
causal events that will result in product failure. Targeting
and eliminating these basic events can

prevent one or more failure opportunities and improve
the overall reliability of the product. From a quantitative
perspective, if the probability of occurrence for each causal
event can be estimated, this information can be used to
calculate the overall probability that the failure will occur.
This is useful for software reliability analysis and can
provide valuable input into failure modes and effects
analysis, which depends on accurate estimates of cause
likelihoods [4].

1) Procedure:-

Design Fault tree analysis is a deductive analysis
technique that starts with a failure and focuses on deducing
all the potential causes and their relationships. Therefore,
DFTA starts with choosing a target failure, possibly
identified in DFMEA, and then using the standard DFTA
event and Boolean gate symbols to create the logic diagram
of possible causal event sequences. After it is constructed,
the fault tree can be analysed manually to identify the key
causal events that can lead to the failure. Alternatively,
specialized DFTA software can be used to quickly perform
an automated analysis of the fault tree. The following
procedure describes the steps for completing a DFTA in
more detail:-

Step 1: Select and Define the Failure to Analyse
Step 2: Create the Fault Tree

Fig: 2 - Basic fault tree construct

Step 3: Analyse the Fault Tree
The mathematical concept of cut sets originated in graph

theory and has been used in the context of fault trees to
mean the unique combinations of basic events that, should
they all occur, will cause the failure or undesired event

Step 4: Review the Matrix Rows to Identify Minimal Cut
Sets As a reminder, a minimal cut set is a cut set where no

events can be removed and still cause the failure if they all
occur at the same time.

Step 5: Interpret the Result

2) DESIGN FAULT TREE ANALYSIS BENEFITS

Fault tree analysis is a deductive analysis technique that
starts with a failure and focuses on deducing all the
potential causes and their relationships. In software
development, this provides benefits such as the following:
■ Improved software quality and reliability result in an

improved customer experience and greater customer
satisfaction.

■ DFTA includes the capability of diagramming any
pertinent causal events that can lead to failure,
including software and hardware errors, human
errors, and operational or environmental events.

■ DFTA can be used proactively to understand and
identify the causes that can lead to failure. This
information can be used to prevent these causes.

■ DFTA can be used reactively to diagnose and learn
from a failure that has occurred, whether in testing
or as part of final product usage.

IV. ELEVATOR DOOR CONTROL SYSTEM (EDCS)

Elevator doors protect riders from falling into the shaft.
The most common configuration is to have two panels that
meet in the middle, and slide open laterally. In a cascading
telescopic configuration (potentially allowing wider
entryways within limited space), the doors run on
independent tracks so that while open, they are tucked
behind one another, and while closed, they form cascading
layers on one side. This can be configured so that two sets
of such cascading doors operate like the centre opening
doors described above, allowing for a very wide elevator
cab. Some buildings have elevators with the single door on
the shaft way, and double cascading doors on the cab.
During a failure of an ingress-egress control system, e.g., a
user propping a door open somewhere in a building, a fail-
secure lock will close, lock, and remain locked even when a
user attempts to unlock it with the key that the user usually
employs. In such a case, an independent release, such as
a reboot or disarming of the securing mechanism, is
required. In contrast, a component may be considered fail-
safe even if its failure does not secure the system. For
example, if a door locked from the inside is left unlocked or
is unlocked at the wrong time, it has failed (in some cases,
along with the entire system), the door may be (but is not
necessarily) fail-safe if its being unlocked does not open it
or attract additional attention to its unlocked state[8].

V. SAFETY ANALYSIS OF EDCS

The safety analysis of ECS software functions takes
place in three sequential steps [4].

A. Design Failure Mode and Effects Analysis (DFMEA)

A Design potential FMEA is an analytical technique
utilized primarily by a design responsible engineer/team as
a means to assure that, to the extent possible, potential
Failure Modes and their associated Causes/Mechanisms
have been considered and addressed. End items, along with
every related system, subassembly and component, should
be evaluated. In its most rigorous form, an FMEA is a

Shahin Fatima et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 4 (1) , 2013, 178 - 182

www.ijcsit.com 180

summary of the team's thoughts (including an analysis of
items that could go wrong based on experience) as a
component, subsystem, or system is designed. This analysis
is performed in order to determine the top events for lower
level analysis. DFMEA analysis will be performed
following the list of failure types encountered during design
phase. DFMEA will be used to identify critical functions
based on the applicable software specification. The severity
consequences of a failure, as well as the observability
requirements and the effects of the failure will be used to
define the criticality level of the function and thus whether
this function will be considered in further deeper criticality
analysis. The formulation of recommendations of fault
related techniques that may help reduce failure criticality is
included as part of this analysis step [4].

B. Design Fault Tree Analysis (DFTA)

After determining the top-level failure events, a
complete Design Fault Tree Analysis shall be performed to
analyse the faults that can cause those failures in design
phase. This is a top down technique that determines the
origin of the critical failure. The top-down technique is
applied following the information provided at the design
level, descending to the code modules. DFTA will be used
to confirm the criticality of the functions (as output from
DFMEA) when analysing the design (from the software
requirements phase, through the design) and to help:

- Reduce the criticality level of the functions due to
software design fault-related techniques used (or
recommended to be used)

- Detail the test-case definition for the set of validation
test cases to be executed [4].

C. Evaluation of Result

The evaluation of the results will be performed after the
above two steps in order to highlight the potential
discrepancies and prepare the recommended corrective
measures.

1) DFMEA Analysis of EDCS

The DFMEA, a sample of which is shown in the Table 1
below presents some software failure modes defined for
EDCS. The origin and effects of each failure mode are
analysed identifying the top level events for further
refinement, when the consequence of this failure could be
catastrophic for this system. The top events that were
singled out for further analysis of failure mode are
Improper Functionality, Inadequate timing of elevator door,
incorrect selection of data structure and Resource
management. Focus on defect prevention by identifying
and eliminating defects in the software design stage helps
to drive quality upstream

2) DFTA Analysis of EDCS

Fault tree analysis (FTA) is a technique that uses
Boolean logic to describe the combinations of intermediate
causal events that can initiate a failure (“unintended event”).
fault tree analysis starts with a specific failure and strives to
enumerate all the causes of that event and their
relationships. The fault tree is a graphical representation of
the conditions or other factors causing or contributing to
the occurrence of the so-called top event, which normally is
identified as an undesirable event. A systematic
construction of the fault tree consists in defining the
immediate cause of the top event. These immediate cause
events are the immediate cause or immediate mechanism
for the top event to occur. From here, the immediate events
should be considered as sub-top events and the same
process should be applied to them. All applicable fault
types should be considered for applicability as the cause of
a higher level fault. This process proceeds down until the
limit of resolution of the tree is reached, thereby reaching
the basic events, which are the terminal nodes of the tree.

Table 1 . Example of DFMEA table for software in design phase of EDCS

Failure Mode Causes of Failure Consequences Predicted
Severity

Recommended Solution

Improper
functionality

1) incomplete requirement
2) Lack of info. with wrongly
estimated objectives of project
3) Incorrect selected alternative
for final solution
4) wrong technology used

Improper working of
software which can lead to
catastrophic failures

Critical

Software should be designed
to work in proper functional
mode

Inadequate
Timing

1) Physical obstructions
2) delays
3) Bad decision making

Unpredictable sequence of
operations leading to hazards

Critical

Designing should be such
that it runs in proper order

Incorrect
selection of Data
Structure

1) Incomplete logic
2) Excessive type conversion
3) Incorrect Algorithm

Out of memory errors

High

Algorithm logic is Verified
for accuracy.Data Structures
and Memory overflow is
checked.

Resource
management

1) Low availability of funds
2) Inadequate time management
3)Improper Team harmony

Project can be delayed or it
can lead to failure of project

High

Proper planning and
execution of available
resources

Shahin Fatima et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 4 (1) , 2013, 178 - 182

www.ijcsit.com 181

 Figure 3. Design Fault Tree sample for top event

VI. RESULT & ANALYSIS

In view of the comprehensive safety analysis, and
specification and implementation the safety properties
during EDCS design and development, the expected result
was that safety-specific EDCS development would produce
a software system with fewer latent safety-critical faults
than traditional non safety specific techniques alone. This is
due to the belief that the safety-specific techniques will
prevent safety critical faults in the specifications and
designs that the traditional techniques have a tendency to
miss. During the operation of EDCS, the safety specific
development version of EDCS clearly demonstrated the
fulfilment of the safety properties. For example, if the
functionality of door of the elevator is not proper then it
can lead to various catastrophic hazards, so control
program should be designed to work in proper functional
mode. If the timing of door open/close is not adequate then
it can lead to some unpredictable operations so designing
should be such that it runs in proper order. Likewise, in the
safety-version of EDCS, if the selection of data structure in
design mode is improper then whole software program can
go wrong so algorithmic logic must be verified for
accuracy before implementing it.

VII. CONCLUSION

Implementation of defect preventive action not only
helps to give a quality project, but it is also a valuable
investment. Defect prevention practices enhance the ability
of software developers to learn from those errors and, more
importantly, learn from the mistakes of others. The benefits
of adopting defect prevention strategy would be enormous
and to list a few, Defect prevention reduces development
time and cost, increases customer satisfaction, reduces
rework effort, thereby decreases cost and improves product
quality. This paper discussed a FMEA and FTA defect
prevention techniques in design phase of software and
applied this approach to software safety analysis for critical
systems. A comprehensive software safety analysis
involving a combination of DFMEA and DFTA techniques
was conducted on a component of the critical system to
identify potentially hazardous design faults. The safety

properties of the prototype elevator door control system
were identified as part of the safety critical requirements.
We also briefly compared safety-specific and non-safety
specific techniques at developing EDCS. The non-safety
version of EDCS broadly focused on achieving the
functional behaviour of the system. The safety-specific
version clearly demonstrated that the software safety
properties identified in EDCS specification were fully met
in the working system.

ACKNOWLEDGEMENT

I would like to thank Dr. Mohd Rizwan Beg HOD,
Computer Science Dept, Integral University, Lucknow,
India, for his valuable support , guidance and
encouragement.

REFERENCES
Failure knowledge diagnosis model based on the integration of Fmea and

Fta. (IEEE) Print:-ISBN: 978-1-4673-1689-7
DOI: 10.1109/ICCIAutom.2011.6183941 Date of Current
Version: 16 April 2012 Issue Date: 27-29 Dec. 2011

Contemporary Trends in Defect Prevention: A Survey Report
I.J.Modern Education and Computer Science, 2012,3, 14-20 Published

Online April 2012 in MECS DOI:
10.5815/ijmecs.2012.03.02

The application of FMEA in the oil industry in Iran: The case of four litre
oil canning process of Sepahan Oil Company (African Journal
of Business Management Vol. 5(8), pp. 3019-3027, 18 April,
2011 DOI: 10.5897/AJBM10.1248 ISSN 1993-8233 ©2011
Academic Journals

FMEA and Fault Tree based Software Safety Analysis of a Railroad
Crossing Critical System (Global Journal of Computer Science
and Technology Volume 11 Issue 8 Version 1.0 May 2011
ISSN: 0975-4172 & Print ISSN: 0975-4350

Defect Analysis and Prevention for Software Process Quality
Improvement International Journal of Computer Applications
(0975 – 8887)Volume 8– No.7, October 2010

Fmea and Fta analysis for application of the reliability centered
maintenance methodology: Case study on Hydraulic turbines
ABCM Symposium Series in Mechatronics - Vol. 3 - pp.803-
812

Improvising the Security of Software Application by the Use of Fault Tree
Analysis in Decision Making Special Issue of International
Journal of Computer Applications on Advanced Computing
and Communication Technologies for HPC Applications -
ACCTHPCA, June 2012

Software Tool for Distributed Elevator Systems Scientific Publications of
the State University of Novi pazar Ser. a: Appl. Math. Inform.
and Mech. Vol. 3, 1 (2011).

Inadequate

Timing

 Incorrect selection
of Data Structure

 Resource management

Bad decision
making Delays Incomplete

logic
Incorrect

Algorithm
Low

availability
 of funds

Inadequate
team

management

Improper
Team

harmony

Improper functionality
Shahin Fatima et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 4 (1) , 2013, 178 - 182

www.ijcsit.com 182

